Self-condensation and Rearrangement of \boldsymbol{N}-Alkylphenacylamines

By J. William Lown * and M. Humayoun Akhtar, Department of Chemistry, University of Alberta, Edmonton 7, Alberta, Canada

Abstract

The reaction of phenacyl bromide with benzylamine affords 1,2 -dibenzyl-1,2-dihydro-2,5-diphenylpyrazine (59\%) and 1,2 -dibenzyl-1,2-dihydro-3,6-diphenylpyrazine (21%), contrary to previous reports. In a series of reactions of N-alkylphenacylamines thermally induced self-condensation is followed by a regiospecific 1,3 -alkyl shift to a substituted carbon atom, to give in good yield 1,2-dialkyl-1,2-dihydro-2,5-diphenylpyrazines at temperatures ranging from ambient to 140°. The reaction of phenacyl bromide with methylamine gives N-methyldiphenacylamine, then the reactive 1.4-dihydro-1.4-dimethyl-2.6-diphenylpyrazine. The latter readily forms an addition product with methanol and separately forms an odd-electron species characteristic of 1.4-dialkyl-1.4-dihydropyrazines.

Whereas the spontaneous self-condensation of α-aminocarbonyl compounds to readily oxidisable dihydropyrazines is widely used as a general synthesis of substituted pyrazines, ${ }^{1}$ the corresponding reaction of N-alkylphenacylamines has received little attention. We reported recently that 1,2 -dihydropyrazines (shown to result from the self-condensation of N-alkylphenacylamines and subsequent rearrangement of the intermediate 1,4-dialkyl-1,4-dihydro-2,5-diphenylpyrazines) may be isolated from the products of controlled thermal decomposition of 3 -aroylaziridines in acetonitrile solutions. ${ }^{2}$ This observation, together with recent reports

on dihydropyrazine chemistry, ${ }^{3,4}$ aroused our interest in the potentially antiaromatic ${ }^{5} 8 \pi$-electron 1,4 -di-alkyl-1,4-dihydropyrazines. We have reported the general synthesis of 1,4 -dialkyl-1,4-dihydro-2,6-diphenylpyrazines. ${ }^{6}$

An apparent discrepancy existed between our results for the 1,4 -dihydro- 2,5 -diphenylpyrazine rearrangement ${ }^{2}$ and literature reports. ${ }^{3 a}$ Mason reported that the base-catalysed cyclodehydration of N-benzylphenacylamine hydrobromide gives the 1,4 -dibenzyl-1,4-dihydropyrazine ($\mathrm{I} ; \mathrm{R}=\mathrm{PhCH}_{2}, \mathrm{Ar}=\mathrm{Ph}$). ${ }^{7} \quad$ Chen and Fowler later reported this assignment to be incorrect

[^0]and showed that the product isolated in 20% yield was the rearranged 1,2 -dihydropyrazine (III; $\mathrm{R}=\mathrm{PhCH}_{2}$) in which the benzyl group has migrated to an unsubstituted carbon atom, in contrast to our previous findings.

(I)

(IV)

We now report that compound (III) is a minor product of this reaction, the major product (59% yield) being the isomer in which the benzyl group has migrated to the phenyl-substituted carbon atom (II; $\left.\mathrm{R}=\mathrm{PhCH}_{2}, \mathrm{Ar}=\mathrm{Ph}\right)$. Moreover, this latter type of product was the only one isolated, in excellent yield, in a series of condensations and subsequent regiospecific rearrangements of other N-alkylphenacylamines, often conducted at moderate temperatures.

Treatment of N-benzylphenacylamine hydrobromide with aqueous 20% potassium carbonate or saturated sodium carbonate solution under reflux for 1 h followed by extraction with ether, evaporation, and trituration of the residual oil with ethanol gave compound (III; $\left.\mathrm{R}=\mathrm{PhCH}_{2}, \mathrm{Ar}=\mathrm{Ph}\right)$ in 21% yield. The n.m.r. spectrum of the product was consistent with the structure and in accordance with the literature report. ${ }^{3 a}$ Chromatographic separation of the residual oil gave compound (II; $\mathrm{R}=\mathrm{PhCH}_{2}, \mathrm{Ar}=\mathrm{Ph}$) as a yellow solid in 59% yield. The structure of (II) follows from analytical data, accurate mass measurement, and the n.m.r. spectrum [$\delta 3.84$ and 4.86 (each $2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}$) and 6.73 (sharp s, $6-\mathrm{H}$); no methine signal as seen for the isomer (III)]. Although the benzylic protons in structure ($\mathrm{II} ; \mathrm{R}=\mathrm{PhCH}_{2}, \mathrm{Ar}=\mathrm{Ph}$) might have been expected to be diastereotopic and therefore to exhibit AB quartets, ${ }^{8}$ the benzylic protons in the related compound (IV) (obtained by thermal 1,3-alkyl shift of
${ }_{5}$ R. Breslow, J. Brown, and J. Gajewski, J. Amer. Chem. Soc., 1967, 89, 4383; R. Breslow, Angew. Chem. Internat. Edn., 1968, 7, 565.
${ }^{6}$ J. W. Lown and M. H. Akhtar, Chem. Comm., 1972, 829.
${ }^{7}$ A. T. Mason and G. R. Winder, J. Chem. Soc., 1893, 63, 1355.
${ }^{8}$ L. M. Jackman and S. Sternhell, 'Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry,' 2nd edn., Pergamon, Oxford, 1969, p. 368.

4-benzyl-1-cyclopentyl-2,6-diphenyl-1,4-dihydropyrazine ${ }^{6}$) are also adventitiously equivalent and appear as a sharp singlet at $\delta 4 \cdot 55$. This latter experiment confirms the previously suggested intermediacy of 1,4-dialkyl-1,4-dihydro-2,6-diphenylpyrazines in this rearrangement.

In reactions related to the formation of compound (II; $\mathrm{R}=\mathrm{PhCH}_{2}, \mathrm{Ar}=\mathrm{Ph}$) the free bases N-t-butylphenacylamine and N-cyclohexylphenacylamine were isolated, characterised, and heated to give compounds ($\mathrm{II} ; \mathrm{R}=\mathrm{Bu}^{\mathrm{t}}, \mathrm{Ar}=\mathrm{Ph}$) (89%) and (II; $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11}$, $\mathrm{Ar}=\mathrm{Ph})(92 \%)$, respectively.

Data for a series of 1,2-dialkyl-1,2-dihydro-2,5-diphenylpyrazines prepared similarly are summarised in the Table. The yields are generally excellent, with the exception of the hindered chiral α-methylbenzyl compound. In all cases a regiospecific migration of the alkyl group to a substituted carbon atom is observed, with the exception of the benzyl derivative where a regioselective rearrangement results.

The reaction of phenacyl bromide with anhydrous methylamine gas in benzene, however gave the reactive 1,4-dihydro-1,4-dimethyl-2,6-diphenylpyrazine (VI). The structure was confirmed, and the alternative isomeric 2,5-diphenyl structure eliminated, by the isolation

and characterisation of the intermediate N-methyldiphenacylamine (V). Treatment of compound (V) with 1 equiv. of methylamine at 60° afforded compound (VI) (53%), identical with that obtained directly. Compound (VI) shows a simple n.m.r. spectrum consistent with its symmetry [$\delta \mathbf{1 . 7 2}$ and 2.07 (each s, NMe), $5 \cdot 32$ (s, vinyl H), and aryl absorption]. Characteristically the spectrum is difficult to reproduce owing to the frequent onset of paramagnetic broadening due to the appearance of a stable odd-electron species, ${ }^{6}$ which in turn gives a finely resolved and stable nineline e.s.r. spectrum of width 62.67 mT in benzene.

Structure (VI) was confirmed by the isolation of a methanol addition product (VII). The n.m.r. spectrum eliminated the isomeric structure (VIII). Compound

(VII)

(VII)

(IX)
(VII) is not prone to form odd-electron species and therefore gives a normal, reproducible n.m.r. spectrum with sharp lines.

In addition, compound (VI) was hydrogenated over palladium to form the 1,2,3,4-tetrahydropyrazine (IX), identified by its n.m.r. spectrum. Addition of only 1 equiv. of hydrogen on atmospheric catalytic hydrogenation is characteristic of 1,4-dialkyl-1,4-dihydropyrazines. ${ }^{\mathbf{3 , 6}}$

The reaction of l-bromoacetylnaphthalene with t-butylamine gave the corresponding α-amino-ketone. Thermolysis of the latter in toluene at 110° gave the rearranged 1,2 -dihydropyrazine (Xa). Similarly the reaction of the cyclohexyl analogue gave only compound (Xb), whereas with the 2 -bromoacetylnaphthalene the isomer (XI) was isolated in good yield. In these cases,

(X) $a ; R=B u^{t}$ b; $R=C_{6} \mathrm{H}_{11}$

(XI)
despite substantially increased steric crowding at the 1 - and 2-positions of the product, migration of R is regiospecific to the substituted position as shown by the absence of a methine n.m.r. signal, which is clearly visible in the spectrum of (IV). The self-condensation and rearrangement of N-cyclohexylphenacylamine in cyclohexene or cumene gave no trace of bicyclohexenyl or cumene dimer, respectively. These observations, together with the great facility with which condensation and rearrangement of some N-alkylphenacylamines take place (e.g. ambient temperature for the isopropyl derivative and 52° for the 2 -naphthyl), the high yields, and the absence of polymeric side products militate against a free-radical chain mechanism.

A more complete mechanistic study is possible of the rearrangement of the 1,4 -dialkyl-2,6-diaryl-1,4-dihydropyrazines. The significance of the stereochemistry and regiospecificity and magnitude of the Arrhenius parameters with respect to the mechanism of the accompanying 1,3 -alkyl shift, whether sigmatropic or radical-dissociation-recombination, will be discussed in a later paper.

EXPERIMENTAL

M.p.s were determined with a Fisher-Johns apparatus. I.r. spectra were recorded with a Perkin-Elmer model 421 spectrophotometer. N.m.r. spectra were recorded with Varian A60 and A100 spectrometers for ca. 5-10\% (w/v) solutions; line positions are reported in p.p.m. from
tetramethylsilane. Mass spectra were determined with an A.E.I. MS12 double-focusing high-resolution instrument (ionisation energy usually 70 eV). Peak measurements were made by comparison with perfluorotributylamine at a resolving power of 15,000 . Kieselgel DF-5 (Camag) and Eastman-Kodak precoated silica sheets were used for the t.l.c. Microanalyses were carried out by Mrs. D. Mahlow of this department. Alumina (B.D.H.) was used for column chromatography.

1,2-Dibenzyl-1,2-dihydro-2,5-diphenylpyrazine and 1,2-Di-benzyl-1,2-dihydro-3,6-diphenylpyrazine.-To $\quad N$-benzylphenacylamine hydrobromide ($4.6 \mathrm{~g}, 15 \mathrm{mmol}$) was added aqueous 20% potassium carbonate (30 ml) and the mixture was heated under reflux with stirring for 1 h . The red oil obtained on cooling was extracted with ether, and the extract dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Trituration of the residual oil with ethanol deposited yellow 1,2-dibenzyl-1,2-dihydro-3,6-diphenylpyrazine (III; $\mathrm{R}=\mathrm{PhCH}_{2}$, $\mathrm{Ar}=\mathrm{Ph})(0.627 \mathrm{~g}, 21 \%)$, m.p. $156-157.5^{\circ}$ (lit., ${ }^{3} 153-$ 157°). The spectral data, in particular the n.m.r. spectrum, were in accord with literature reports. ${ }^{3}$ The residual

C, 75.1; H, 8.7; N, 7.2. $\mathrm{C}_{12} \mathrm{H}_{17}$ NO requires $\mathrm{C}, 75 \cdot 3 ; \mathrm{H}$, $8 \cdot 9 ; \mathrm{N}, 7 \cdot 3 \%$).

Self-condensation and Rearrangement of Free N -Alky'l-phenacylamines.-A solution of N-t-butylphenacylamine ($4.75 \mathrm{~g}, 25 \mathrm{mmol}$) in o-xylene (100 ml) was heated under reflux for 7 h . Removal of the solvent in vacuo gave a red oil which slowly solidified. Trituration with methanol afforded 1,2-dihydro-2,5-diphenyl-1,2-di-t-butylpyrazine ($\mathrm{II} ; \mathrm{R}=\mathrm{Bu}^{\mathrm{t}}, \mathrm{Ar}=\mathrm{Ph}$) $(3.73 \mathrm{~g}, 89 \%)$, m.p. 145-147, $\delta\left(\mathrm{CDCl}_{3}\right) 0.66\left(9 \mathrm{H}, \mathrm{s}, 2-\mathrm{Bu}^{t}\right), 1.38\left(9 \mathrm{H}, \mathrm{s}, 1-\mathrm{Bu}^{t}\right)$, $6 \cdot 86(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$, and $7 \cdot 16-7 \cdot 82(11 \mathrm{H}, \mathrm{m}$, ArH and $3-\mathrm{H})$.
The analogous reaction of N-cyclohexylphenacylamine afforded 1,2-dicyclohexyl-1,2-dihydro-2,5-diphenylpyrazine (II; R $=\mathrm{C}_{6} \mathrm{H}_{11}, \mathrm{Ar}=\mathrm{Ph}$), m.p. $97-98.5^{\circ}$, in 92% yield.
Similar reaction conditions were employed to prepare the 1,2 -dialkyl-1,2-dihydro-2,5-diphenylpyrazines listed in the Table. In the case of the t-butyl derivative a $2 \cdot 5$-fold excess of t-butylamine was added and the temperature of refluxing o-xylene used.
Reaction of α-Bromoacetophenone with Methylamine.Into a solution of α-bromoacetophenone ($10 \mathrm{~g}, 50 \mathrm{mmol}$)

1,2-Dialkyl-1,2-dihydro-2,5-diphenylpyrazines

R	M.p. (${ }^{(} \mathrm{C}$)	Yield (\%)	Required (\%)				Found (\%)				$\lambda_{\text {mar. }} / \mathrm{nm}$	$\log \varepsilon$
			C	H	N	M	c	H	N	M^{+}		
$\mathrm{C}_{6} \mathrm{H}_{11}$	97-98.5	$\begin{aligned} & 92^{a} \\ & 80^{b} \end{aligned}$	$84 \cdot 3$	$8 \cdot 6$	$7 \cdot 0$	398.2722	$84 \cdot 0$	8.65	6.9	398-2724	269	$4 \cdot 29$
$B u^{\text {t }}$	145-147	$\begin{aligned} & 899^{a} \\ & 73^{b} \end{aligned}$	83.2	8.7	$8 \cdot 1$	$346 \cdot 2409$	83.35	8.7	8.15	346.2417	262	$4 \cdot 29$
cyclo-C5 H_{9}	85-87	79	84.3	8.2	$7 \cdot 6$	$370 \cdot 2409$	$84 \cdot 0$	$8 \cdot 1$	$7 \cdot 4$	$370 \cdot 2419$	270	$4 \cdot 33$
cyclo- $\mathrm{C}_{8} \mathrm{H}_{15}$	73-74.5	70	$84 \cdot 5$	$9 \cdot 3$	6.2	$454 \cdot 3348$	$84 \cdot 5$	$9 \cdot 5$	$6 \cdot 1$	454.3338	259	$4 \cdot 30$
cyclo- $\mathrm{C}_{12} \mathrm{H}_{23}$	111-112.5	59	84.7	10.3	4.9	566.4600	84.3	$10 \cdot 2$	$5 \cdot 2$	$566 \cdot 4606$	267	$4 \cdot 33$
2 -Naphthyl ${ }^{\text {c }}$	193-194.5	89	86.7	7.7	$5 \cdot 6$	498.3035	86.8	$7 \cdot 6$	$5 \cdot 3$	498.3046	259	$4 \cdot 49$
											268	$4 \cdot 56$
	63-64.5	78	84.4								311	4.35
$\mathrm{CH}_{2} \mathrm{Ph}{ }^{\text {che }}$	101-102.5	59	$88 \cdot 0$	6.3	6.8	$\stackrel{426 \cdot 3035}{414.2096}$	$84 \cdot 2$ $86 \cdot 9$	8.7	6.8 6.4	$426 \cdot 3030$ $414 \cdot 2085$	267	4.18 4.14
											392	$2 \cdot 45$

a Yield when pure N-alkylphenacylamine is dimerised. ${ }^{b}$ Yield without isolation of the N-alkylphenacylamine. e A reaction between 2 -bromoacetylnaphthalene and cyclohexylamine in benzene at $52 \pm 1^{\circ}$ for 14 h gave the rearranged product in 88% yield.
oil from the filtrate was chromatographed on alumina (50 g). Elution with benzene-hexane ($1: 1$) gave as the main fraction a yellow oil which on trituration with ethanol and cooling gave yellow 1,2-dibenzyl-1,2-dihydro-2,5-diphenylpyrazine ($1.77 \mathrm{~g}, 59 \%$) (II; $\mathrm{R}=\mathrm{PhCH}_{2}, \mathrm{Ar}=\mathrm{Ph}$), m.p. $101-102.5^{\circ}$ (see Table), $\delta\left(\mathrm{CDCl}_{3}\right) 3.84\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.73(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$, and $6.93-8.34$ ($21 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ and $3-\mathrm{H}$).

Virtually identical yields and product ratio were obtained when saturated sodium carbonate solution was used as the base catalyst.

N-Cyclohexylphenacylamine.-A mixture of α-bromoacetophenone ($10 \mathrm{~g}, 5 \mathrm{mmol}$) and cyclohexylamine ($10 \mathrm{~g}, 10$ mmol) in dry ether (150 ml) was stirred at room temperature for 6 h . The precipitated cyclohexylamine hydrobromide was collected and the filtrate washed with cold water ($2 \times 25 \mathrm{ml}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent in vacuo gave yellow N-cyclohexylphenacylainine ($8.64 \mathrm{~g}, 80 \%$), m.p. $113-115.5^{\circ}$ (from methanol) (Found: C, $77.1 ; \mathrm{H}, 8.9 ; \mathrm{N}, 6.5 . \quad \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{C}, 77 \cdot 3$; $\mathrm{H}, 8.8 ; \mathrm{N}, 6.4 \%), \nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3310(\mathrm{NH})$ and $1670 \mathrm{~cm}^{-1}$ (CO).

N-t-Butylphenacylamine.-A similar reaction between α-bromoacetophenone and t -butylamine in dry ether gave N -t-butylphenacylamine ($\mathbf{7 5} \%$), m.p. $125-126^{\circ}$ (Found:
in benzene (200 ml) was passed a slow stream of anhydrous methylamine gas for 10 min . The mixture was set aside for 2 h and then heated at $60 \pm 1^{\circ}$ for 1 h , cooled, and filtered. The filtrate was washed with cold water and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Removal of the solvent in vacuo left a viscous red oil which solidified upon trituration with ethanol (95%) to give the red 1,4 -dihydro-1,4-dimethyl-2,6-diphenylpyrazine (V) ($1.04 \mathrm{~g}, 16 \%$), m.p. $97-99.5^{\circ}$ [Found: N, $10.8 \% ; M$ (mass spec.), $262 \cdot 1468 . \quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2}$ requires N , $10.7 \% ; M, 262 \cdot 1470], \delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \mathrm{l} .72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N} \cdot \mathrm{CH}_{3}\right), 2.07$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N} \cdot \mathrm{CH}_{3}\right), 5 \cdot 32(2 \mathrm{H}, \mathrm{s})$, and $6.45-7.37(10 \mathrm{H}, \mathrm{m}$, aromatic). The filtrate was concentrated and treated with methanol and when chilled deposited reddish yellow 1,2,3,4-tetrahydro-2-methoxy-1,4-dimethyl-3,5-diphenylpyrazine (VI) ($0.437 \mathrm{~g}, 6 \%$), m.p. $83-85^{\circ}$ [Found: N, $9 \cdot 6 \%$: M (mass spec.) $294 \cdot 1738 . \quad \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{N}, 9 \cdot 5 \% ; M$, 294.1732], $\delta\left(\mathrm{CDCl}_{3}\right) 2.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $3.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O} \cdot \mathrm{CH}_{3}\right), 4.52\left(1 \mathrm{H}, \mathrm{d}, J_{2,3} 2.0 \mathrm{~Hz}, 3-\mathrm{H}\right), 4.76$, $\left(1 \mathrm{H}, \mathrm{q}, J_{2,6} 1.0 \mathrm{~Hz}, 2-\mathrm{H}\right), 5.72\left(1 \mathrm{H}, \mathrm{d}, J_{2,6} 1.0 \mathrm{~Hz}, 6-\mathrm{H}\right)$ and $7 \cdot 05-7 \cdot 67(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Attempted recrystallisation of compound (V) from warm methanol afforded compound (VI).

Removal of the solvent from the filtrate of the original reaction gave a dark red oil which resisted crystallisation and was chromatographed on alumina to give, as a dark
red oil, N-methyldiphenacylamine ($3.38 \mathrm{~g}, 50 \%$) [Found: M (mass spec.), 267-1256. Calc. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}: M$, $267 \cdot 1259], \delta\left(\mathrm{CDCl}_{3}\right) 2 \cdot 58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4 \cdot 20\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, and $7.35-8.18(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1655 \mathrm{~cm}^{-1}$ (CO). The structure was confirmed by an independent preparation followed by conversion into (V) with methylamine as follows.
Anhydrous methylamine was passed into a hot ($60 \pm 1^{\circ}$) solution of N-methyldiphenacylamine ($2.65 \mathrm{~g}, 10 \mathrm{mmol}$) in benzene $(100 \mathrm{ml})$ for 20 min . The mixture was kept at 60° for 1 h . Removal of the solvent in vacuo gave a red oil, trituration of which with cold methanol gave red 1,4-dihydro-1,4-dimethyl-2,6-diphenylpyrazine ($1 \cdot 37 \mathrm{~g}, 53 \%$), m.p. and mixed m.p. 98- $100 \cdot 5^{\circ}$.

Catalytic Hydrogenation of 1,4-Dihydro-1,4-dimethyl-2,6-diphenylpyrazine.-The pyrazine $(0 \cdot 60 \mathrm{~g})$ hydrogenated over palladium-charcoal (100 mg) in ethyl acetate (75 ml) at atmospheric pressure during 48 h . The residual oil obtained by filtration through Celite and removal of the solvent in vacuo was chromatographed on alumina (50 g) with benzene-hexane ($1: 3$) as eluant to give 1,2,3,4-tetra-hydro-1,4-dimethyl-2,6-diphenylpyrazine as an oil ($0 \cdot 292 \mathrm{~g}$, 47%) [Found: N, $10 \cdot 2 \% ; M$ (mass spec.), 264.1627. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2}$ requires $\left.\mathrm{N}, 10 \cdot 6 \% ; \quad M, 264 \cdot 1627\right]$, $\delta\left(\mathrm{CDCl}_{3}\right)$ $2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N} \cdot \mathrm{CH}_{3}\right), 3.18\left(2 \mathrm{H}, 2 \mathrm{~d}, J_{\mathrm{AB}} 2.0, J_{\mathrm{AB}}, 4.0 \mathrm{~Hz}\right.$, $\left.3-\mathrm{H}_{2}\right), 4 \cdot 18 \mathrm{br}\left(1 \mathrm{H}, \mathrm{t}, 2-\mathrm{H}_{2}\right), 5 \cdot 78(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$, and $7 \cdot 08-$ 7.55 ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

4-Benzyl-1-cyclopentyl-1,4-dihydro-2,6-diphenylpyrazine.A mixture of N-benzyldiphenacylamine hydrobromide $(4.24 \mathrm{~g}, 10 \mathrm{mmol}$.) and cyclopentylamine (Aldrich) (1.78 g , 20 mmol) was heated at $110 \pm 1^{\circ}$ under dry nitrogen for
1.5 h . The resulting red-orange oil was diluted with ether and the precipitated cyclopentylamine hydrobromide was collected. Removal of the ether in vacuo left a red-orange oil, trituration of which with ethanol resulted in the deposition of red 4-benzyl-1-cyclopentyl-1,4-dihydro-2,6-diphenylpyrazine ($1.19 \mathrm{~g}, 30.4 \%$), m.p. $107-108.5^{\circ}$ [Found: C, $85 \cdot 5 ; \mathrm{H}, 7 \cdot 3 ; \mathrm{N}, 7 \cdot 2 \% ; M$ (mass spec.), $392 \cdot 2245$. $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2}$ requires C, $\left.85 \cdot 7 ; \mathrm{H}, 7 \cdot 2 ; \mathrm{N}, 7 \cdot 2 \% ; M, 392 \cdot 2253\right]$, $\delta\left(\mathrm{CDCl}_{3}\right) 0.92-2.02(8 \mathrm{H}, \mathrm{m}$, cyclopentyl), $3.20-3.60(1 \mathrm{H}$, m , methine), $3.70\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 6.23(2 \mathrm{H}, \mathrm{s}$, vinyl H$)$, and $6.96-7.79(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Thermal Rearrangement of 4-Benzyl-1-cyclopentyl-1,4-di-hydro-2,6-diphenylpyrazine.-A solution of the 1,4 -dihydropyrazine (1.09 g) in o-xylene (25 ml) was heated under reflux for 7 h . Removal of the solvent in vacuo gave a red-orange oil which was chromatographed on alumina (60 g). Elution with benzene-hexane ($1: 4$) gave an oil ($0.474 \mathrm{~g}, 47 \cdot 4 \%$) which on trituration with ethanol deposited yellow 1-benzyl-2-cyclopentyl-1,2-dihydro-3,5-diphenylpyrazine, m.p. 101-102.5 ${ }^{\circ}$ [Found: C, $85 \cdot 4$; H, $7 \cdot 4$; N, $7 \cdot 2 \%$; M (mass spec.), $392 \cdot 2257 . \mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2}$ requires $\mathrm{C}, 85 \cdot 7$; $\mathrm{H}, 7.2 ; \mathrm{N}, 7 \cdot 1 \% ; M, 392.2253]$, $\delta\left(\mathrm{CDCl}_{3}\right) 0.83-1.75$ ($8 \mathrm{H}, \mathrm{m}$, cyclopentyl), $1.88-2.55$ ($1 \mathrm{H}, \mathrm{m}$, methine), 4.38 ($1 \mathrm{H}, \mathrm{dd}, J 9.5, J_{2,6} 1.3 \mathrm{~Hz}, 2-\mathrm{H}$), $4.53\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right)$, $6.52\left(1 \mathrm{H}, \mathrm{d}, J_{2,6} 1.3 \mathrm{~Hz}, 6-\mathrm{H}\right)$, and $7.02-7.87(15 \mathrm{H}, \mathrm{m}$, ArH).

This research was supported by the National Research Council of Canada and the Chemistry Department of the University of Alberta.
[2/2098 Received, 4th September, 1972]

[^0]: ${ }^{1}$ Y. T. Pratt, in ' Heterocyclic Compounds,' ed. R. C. Elderfield, vol. 6, Wiley, New York, 1957, ch. 9.
 ${ }^{2}$ J. W. Lown and M. H. Akhtar, Canad. J. Chem., 1972, 50, 2236.
 ${ }^{3}$ S.-J. Chen and F. W. Fowler, J. Org. Chem., (a), 1970, 35, 3987; (b) 1971, 36, 4025.
 ${ }^{4}$ R. A. Sulzbach and A. F. M. Iqbal, Angew. Chem. Internat. Edn., 1971, 10, 127.

